MANAGEMENT OF HYPERTENSION AND DYSLIPIDEMIA IN PATIENTS WITH DIABETES

Gregg Simonson, PhD
Director, Professional Training and Consulting
International Diabetes Center; Adjunct Assistant Professor, University of Minnesota Department of Family Practice

Outline

- CVD Trends in Patients with Diabetes
- Management of Dyslipidemia
- Management of Hypertension
People with diabetes die younger…
….and cardiovascular disease is the main killer

Addressing Multiple Risk Factors

The Emerging Risk Factors Collaboration, NEJM 2011

Gaede et al, NEJM, 2008
Addressing Multiple Risk Factors

Priorities of Care for Adults with Diabetes

Diagnosis–Prevention

Dx = A1C ≥6.5%, fasting ≥126 mg/dL (7.0 mmol/L), or random ≥200 mg/dL (11.1 mmol/L) + symptoms

Self-Management Knowledge and Skill

- Monitoring
- Medication
- Risk reduction
- Living & coping
- Problem solving
- Physical activity
- Food plan & nutrition

Glucose

- Hemoglobin A1C
 - Target < 7.0%
- SMBG
 - Pre 70-130 mg/dL (3.9-7.2 mmol/L)
 - Post <180 mg/dL (<10 mmol/L)

Lipids

- Annual Lipid Profile

Hypertension

- Blood Pressure
 - (every visit)
 - Dx and Rx < 140/90

Macrovascular Complications

- ASA, tobacco, ACEI/ARB, statin

Microvascular complications

Other essentials of care

- Hospital care
- Foot care
- Dental care
- Immunizations

Annual Screening

- Nephropathy
 - Microalbumin screening
 - Calculated GFR
 - Dilated retinal exam
 - Neuropathy
 - Neuro and foot exam
 - Sexual health

Statin?

© 2015 International Diabetes Center.
Relative Risk Reductions: Lipids

Effects on MAJOR VASCULAR EVENTS, per mmol/L reduction in LDL cholesterol, among participants with diabetes

<table>
<thead>
<tr>
<th>Major vascular event and prior diabetes</th>
<th>Events (%)</th>
<th>RR (CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major coronary event</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>775 (5.3)</td>
<td>0.78 (0.69 - 0.87)</td>
</tr>
<tr>
<td>No diabetes</td>
<td>2561 (7.2)</td>
<td>0.77 (0.73 - 0.81)</td>
</tr>
<tr>
<td>Any major coronary event</td>
<td>3337 (7.4)</td>
<td>0.77 (0.74 - 0.80)</td>
</tr>
<tr>
<td>Coronary revascularization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>491 (5.2)</td>
<td>0.75 (0.64 - 0.88)</td>
</tr>
<tr>
<td>No diabetes</td>
<td>2122 (6.0)</td>
<td>0.70 (0.62 - 0.79)</td>
</tr>
<tr>
<td>Any coronary revascularization</td>
<td>2620 (5.6)</td>
<td>0.76 (0.73 - 0.80)</td>
</tr>
</tbody>
</table>

1 mmol/L [39 mg/dL] LDL reduction = 20% relative reduction in major vascular events

American Diabetes Association LDL Cholesterol Targets 2014 vs. 2015

- **LDL-C Goal Diabetes**
 - 2014: LDL-C <100 mg/dL (<2.6 mmol/L)
 - 2015: No target

- **LDL-C Goal Diabetes + CVD**
 - 2014: LDL-C <70 mg/dL (<1.8 mmol/L)
 - 2015: No target

ADA Clinical Practice Recommendations, Diabetes Care 2014; 37 Suppl 1; ADA Standards of Medical Care, Diab Care 2015; 38 Suppl 1
Rationale

- Statin therapy benefits most diabetes patients
- No LDL targets, consistent with 2013 AHA/ACC recommendations

Diabetes Care

Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association

Diabetes Care Publish Ahead of Print, published online August 5, 2015
ADA/AHA 2015 Scientific Statement on Prevention of CVD in Type 2 DM: Cholesterol

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>Specific recommendation and Level of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol</td>
<td>Patients with diabetes mellitus between 40 and 75 years of age with LDL-C between 70 and 189 mg/dl should be treated with a moderate-intensity statin*† (ACC/AHA Class I; Level of Evidence A) (ADA Level of Evidence A). Statin therapy of high intensity† should be given to individuals with diabetes mellitus between 40 and 75 years of age with a ≥7.5% estimated risk of ASCVD (ACC/AHA Class IIa; Level of Evidence B). Among individuals with diabetes mellitus who are <40 or ≥75 years of age, practitioners should evaluate the benefit of statin treatment (ACC/AHA Class IIa; Level of Evidence C). Evaluate and treat patients with fasting triglycerides >500 mg/dl.</td>
</tr>
</tbody>
</table>

ADA/AHA Diab Care 2015; Online August 5

Circulation. published online November 12, 2013;
Overview of ACC/AHA Cholesterol Treatment Guidelines

- 4 Statin Benefit Groups Identified
- No specific LDL-C or Non-HDL-C Targets
- Primary Prevention for Individuals without Diabetes and LDL-C 70-189 mg/dL (1.8-4.9 mmol/L) based on Pooled Cohort Equation 10-Year ASCVD Risk ≥7.5%
- Concept of Low, Moderate and High-Intensity Statin Therapy

4 Statin Benefit Groups

1. Individuals with clinical ASCVD (ACS, MI, angina, revascularization, stroke, TIA, PAD)
2. Individuals with LDL-C ≥190 mg/dL (4.9 mmol/L)
3. Individuals 40-75 years of age with diabetes and LDL-C 70-189 mg/dL (1.8-4.9 mmol/L)
4. Individuals w/o clinical ASCVD or diabetes who are 40-75 years of age and LDL-C 70-189 mg/dL (1.8-4.9 mmol/L) and 10 year ASCVD risk ≥ 7.5%

Stone et al., Circulation. 2013; Nov Online.
Intensity of Statin Therapy

<table>
<thead>
<tr>
<th>High-Intensity Statin Therapy</th>
<th>Moderate-Intensity Statin Therapy</th>
<th>Low-Intensity Statin Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily dose lowers LDL–C on average, by approximately ≥50%</td>
<td>Daily dose lowers LDL–C on average, by approximately 30% to <50%</td>
<td>Daily dose lowers LDL–C on average, by <30%</td>
</tr>
<tr>
<td>Atorvastatin (40)–80 mg</td>
<td>Atorvastatin 10 (20) mg</td>
<td>Simvastatin 10 mg</td>
</tr>
<tr>
<td>Rosuvastatin 20 (40) mg</td>
<td>Rosuvastatin (5) 10 mg</td>
<td>Pravastatin 10–20 mg</td>
</tr>
<tr>
<td></td>
<td>Simvastatin 20–40 mg</td>
<td>Lovastatin 20 mg</td>
</tr>
<tr>
<td></td>
<td>Pravastatin 40 (80) mg</td>
<td>Fluvastatin 20–40 mg</td>
</tr>
<tr>
<td></td>
<td>Lovastatin 40 mg</td>
<td>Fluvastatin XL 80 mg</td>
</tr>
<tr>
<td></td>
<td>Fluvastatin 40 mg bid</td>
<td>Fluvastatin 40 mg</td>
</tr>
<tr>
<td></td>
<td>Pitavastatin 2–4 mg</td>
<td>Pitavastatin 1 mg</td>
</tr>
</tbody>
</table>

Statins associated with modest increased risk for diabetes (10-25%), yet CV benefit outweighs risk of diabetes

Intravascular Ultrasonography (IVUS)

- IVUS allows the quantification of plaque volume and objective measures of plaque progression or regression.
 - PAV: Percentage Change in Atheroma volume
 - TAV: Change in mm³ of total atheroma volume
 - Color IVUS may help identify vulnerable plaques.

Can statins reverse atherosclerosis?

Answer: Yes in some patients and stops progression in others.

Results of the Reversal of Atherosclerosis with Aggressive Lipid Lowering (REVERSAL) study: (2004): ACS pts with IVUS at baseline and 18 months. No progression on atorvastatin 80 mg vs. progression on pravastatin 40 mg.

Case Study: Miguel

Miguel is a 43 year old with type 2 diabetes for 2 years; family history type 2 diabetes; works as real estate broker; non-smoker

Problem List: Type 2 DM, HTN and dyslipidemia

Current Labs/BP/Weight:
A1C 7.2% (55 mmol/mol), Total –C 168 mg/dL (4.3 mmol/L), LDL 91 mg/dL (2.3 mmol/L), HDL 32 mg/dL (0.83 mmol/L), triglycerides 225 mg/dL (2.5 mmol/L)
BP: 126/75 mmHg; 185 lb (84 kg); BMI 29

Current Therapy:
Metformin 1000 mg bid; irbesartan/hydrochlorothiazide (Avalide) 150/12.5 mg; atorvastatin 20 mg; aspirin 81 mg

Do you increase his statin dose?
ASCVD Risk for Miguel

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Units</th>
<th>Miguel Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td>M or F</td>
<td>M</td>
</tr>
<tr>
<td>Age</td>
<td>Years</td>
<td>43</td>
</tr>
<tr>
<td>Race</td>
<td>AA or WH (others)</td>
<td>WH</td>
</tr>
<tr>
<td>Total-Chol.</td>
<td>mg/dL</td>
<td>168</td>
</tr>
<tr>
<td>HDL-C</td>
<td>mg/dL</td>
<td>32</td>
</tr>
<tr>
<td>SBP</td>
<td>mmHg</td>
<td>126</td>
</tr>
<tr>
<td>HTN Treatment</td>
<td>Y or N</td>
<td>Y</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Y or N</td>
<td>Y</td>
</tr>
<tr>
<td>Smoker</td>
<td>Y or N</td>
<td>N</td>
</tr>
</tbody>
</table>

10 yr CV Risk = 13%

AHA ACC Omnibus Risk Estimator http://my.americanheart.org

Primary Prevention in Diabetes

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>NHLBI Grade</th>
<th>NHLBI Evidence Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Prevention in Individuals With Diabetes Mellitus and LDL–C ≥70–189 mg/dL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Moderate-intensity statin therapy should be initiated or continued for adults 40 to 75 years of age with diabetes mellitus.</td>
<td>A (Strong)</td>
<td>19, 29-34, 40</td>
</tr>
<tr>
<td>2. High-intensity statin therapy is reasonable for adults 40 to 75 years of age with diabetes mellitus with a ≥7.5% estimated 10-year ASCVD risk if not contraindicated.</td>
<td>E (Expert Opinion)</td>
<td>---</td>
</tr>
<tr>
<td>3. In adults with diabetes mellitus, who are <40 or >75 years of age, it is reasonable to evaluate the potential for ASCVD benefits and for adverse effects, for drug-drug interactions, and to consider patient preferences when deciding to initiate, continue, or intensify statin therapy.</td>
<td>E (Expert Opinion)</td>
<td>---</td>
</tr>
</tbody>
</table>

Stone et al., Circulation, 2013; Nov Online.
Who does not endorse the new guidelines?

American Association of Clinical Endocrinologists, The European Society of Cardiology, The International Atherosclerosis Society, National Lipid Association

- Certain at-risk populations of patients will be underserved by them.
- The focus on large-scale randomized controlled trials is "highly restrictive" and leaves out much new information.
- The controversial risk calculator is “based on outmoded data and has not been validated”.
- Very-high-risk patients may need non-statin agents to achieve LDL reduction that will further reduce their coronary heart disease risk.

European Society of Cardiology Guidelines for Management of Dyslipidemia

<table>
<thead>
<tr>
<th>Dyslipidaemia in diabetes</th>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statin therapy is recommended in patients with T1DM and T2DM at very high-risk (i.e. if combined with documented CVD, severe CKD or with one or more CV risk factors and/or target organ damage) with an LDL-C target of <1.8 mmol/L (<70 mg/dL) or at least a ±50% LDL-C reduction if this target goal cannot be reached.</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Statin therapy is recommended in patients with T2DM at high risk (without any other CV risk factor and free of target organ damage) with an LDL-C target of <2.5 mmol/L (<100 mg/dL).</td>
<td>I</td>
<td>A</td>
</tr>
<tr>
<td>Statins may be considered in T1DM patients at high risk for cardiovascular events irrespective of the basal LDL-C concentration.</td>
<td>IIB</td>
<td>C</td>
</tr>
<tr>
<td>It may be considered to have a secondary goal of non-HDL-C <2.6 mmol/L (<100 mg/dL) in patients with DM at very high risk and of <3.3 mmol/L (<130 mg/dL) in patients at high risk.</td>
<td>III</td>
<td>C</td>
</tr>
<tr>
<td>Intensification of statin therapy should be considered before the introduction of combination therapy with the addition of ezetimibe.</td>
<td>IIa</td>
<td>C</td>
</tr>
<tr>
<td>The use of drugs that increase HDL-C to prevent CVD in T2DM is not recommended.</td>
<td>III</td>
<td>A</td>
</tr>
</tbody>
</table>
Case Study: Miguel

Miguel is a 43 year old with type 2 diabetes for 2 years; family history type 2 diabetes; works as real estate broker; non-smoker

Problem List: Type 2 DM, HTN and dyslipidemia

Current Labs/BP/Weight:
- A1C 7.2% (55 mmol/mol), Total –C 168 mg/dL (4.3 mmol/L), LDL 91 mg/dL (2.3 mmol/L), HDL 32 mg/dL (0.83 mmol/L), triglycerides 225 mg/dL (2.5 mmol/L)
- BP: 126/75 mmHg; 185 lb (84 kg); BMI 29

Current Therapy:
- Metformin 1000 mg bid; irbesartan/hydrochlorothiazide (Avalide) 150/12.5 mg; atorvastatin 20 mg; aspirin 81 mg

Do you start combination therapy for dyslipidemia?

Combination Therapy for Dyslipidemia

Rationale
- ACCORD trial showed the addition of fenofibrate to statin therapy did not reduce CV events compared to statin therapy alone
- AIM-High trial was stopped early due to lack of CV benefit of adding niacin to statin therapy vs. placebo
Statin & Fibrate Combo Therapy in Type 2 DM
Results of the ACCORD Lipid Study

- Addition of fibrate to statin increased HDL and decreased triglyceride modestly compared to placebo
- Trend towards benefit in patients with triglyceride ≥204 mg/dL and HDL ≤34

What about Niacin?

- Improves all major lipid fractions
- The most HDL raising drug (15-35%)
- LDL ↓ 15-35%; TG ↓ 20-50%; LP(a) ↓ 25%
- Raises plasma glucose ~8-9 mg/dL (0.4-0.5 mmol/L)
- Poor side effect profile (flushing)
- Limited established prevention of CVD
 - AIM-HIGH stopped 05/11 – no CVD benefit
 - HPS2 –THRIVE stopped 12/12 - no CVD benefit
AIM-HIGH Stopped Early

- Patients with vascular disease, LDL to goal on statin and Zetia if needed, HDL <40 mg/dL (1.03), and triglycerides >160 mg/dL (1.79)
- Simvastatin 40 mg +/- niacin
 - Poor side effect profile with niacin
- Study stopped early. No difference in MI, CVA, ACS, or vascular death with niacin.
- Small excess of ischemic stroke on niacin. 9 of those patients had stopped niacin.

HPS2-Thrive: Effect of Extended Release Niacin/Laropiprant on CV Events

- Risk ratio 0.96 (95% CI 0.90 – 1.03)
- Logrank P=0.29

Update: January, 2013 EMA suspends marketing of nicotinic acid/laropiprant (Tredaptive, Trevaclyn and Pelzont) due to HSP2-Thrive results and increased risk of myopathy, skin and gastrointestinal side effects.
What about Ezetimibe (Zetia)?

- Cholesterol absorption inhibitor
- Modest LDL lowering (15-20%) alone or when added to statin
- Generally well tolerated
- ENHANCE Trial showed no benefit in carotid intima-media thickness above statin alone
- Modest reduction CVD in Improve-It

Primary Endpoint — ITT

Cardiovascular death, MI, documented unstable angina requiring rehospitalization, coronary revascularization (≥30 days), or stroke

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Event Rate (%)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simva</td>
<td>34.7%</td>
<td>50</td>
</tr>
<tr>
<td>EZ/Simva</td>
<td>32.7%</td>
<td></td>
</tr>
</tbody>
</table>

HR 0.936 CI (0.887, 0.988)
p=0.016

2742 events, 2572 events

7-year event rates
What about Omega-3 Fatty Acids?

- Lowers TG 30-40%, LDL↑3-5% (DHA responsible – new EPA-only formulation Vascepa 01/13); HDL 0%
- Lovaza, prescription for omega 3-acid
 - Approved by FDA for triglycerides ≥500 mg/dL (5.6 mmol/L)
 - Usual dose 1000 mg capsule qid or 2 capsules bid
 - Lowers triglycerides 20-50%; may raise LDL
- Vascepa – 4000 mg/day divided as 2 capsules bid
- Limited CVD outcome data
 - ORIGIN study negative

CV Outcomes with Omega-3 Fatty Acid Supplementation in ORIGIN Trial

New Class of Lipid Medication

- Proprotein convertase subtilisin/kexin type 9 (PCSK-9) inhibitors
 - Monoclonal antibodies to PCSK-9
 - Injectable medication (every 2 weeks to monthly)
 - Reduce LDL >60% on top of statin
 - Alirocumab (Praluent) approved by FDA and Evolocumab (Repatha) approved by EMA and likely soon to be approved by FDA
 - Expensive medications e.g. Praulent is $14,600/year (U.S. dollars)

PCSK9 Mode of Action

Dadu, R. T. & Ballantyne, C. M. (2014) Lipid lowering with PCSK9 inhibitors
Nat. Rev. Cardiol. doi:10.1038/nrcardio.2014.84
LDL Lowering Potential of Alirocumab (Praluent)

PCSK9 Indications

Evolocumab (Repatha)

Primary Hypercholesterolemia and Mixed Dyslipidemia
- In combination with a statin or statin with other lipid lowering therapies in patients unable to reach LDL-C goals with the maximum tolerated dose of a statin
- Alone or in combination with other lipid-lowering therapies in patients who are statin-intolerant, or for whom a statin is contraindicated.

Homozygous familial hypercholesterolemia
- Adults and adolescents aged 12 years and over with homozygous familial hypercholesterolemia in combination with other lipid-lowering therapies.

Alirocumab (Praluent)

1. Adults with atherosclerotic cardiovascular (CV) disease for additional lowering of LDL-C when used as an adjunct to diet and maximally-tolerated statin therapy
2. Adults with heterozygous familial hypercholesterolemia for additional lowering of LDL-C, as an adjunct to diet and maximally-tolerated statin therapy
Priorities of Care for Adults with Diabetes

Diagnosis–Prevention
- Dx = A1C ≥6.5%, fasting ≥126 mg/dL (7.0 mmol/L), or random ≥200 mg/dL (11.1 mmol/L) + symptoms

Self-Management Knowledge and Skill
- Monitoring
- Risk reduction
- Medication
- Living & coping
- Problem solving
- Physical activity
- Food plan & nutrition

Glucose
- Hemoglobin A1C
 - Target < 7.0%
- Annual Lipid Profile
 - Statin?
- SMBG
 - Pre 70–130 mg/dL (3.9–7.2 mmol/L)
 - Post <180 mg/dL (<10 mmol/L)

Lipids
- Blood Pressure
 - (every visit)
 - Dx and Rx < 140/90

Hypertension
- Microvascular complications
- ASA, tobacco, ACEI/ARB, statin

Macrovascular Complications
- Annual Screening
 - Retinopathy
 - Neuropathy
 - Nephropathy
 - Microalbumin screening
 - Calculated GFR
 - Dilated retinal exam

Other essentials of care
- Hospital care
- Foot care
- Dental care
- Immunizations

History of Blood Pressure Targets

American Diabetes Association

- 1980-1990: Treat to “normal” BP
 - Diabetes is CVD equivalent
- 1995: <130/85 mmHg
- 2000-2012: <130/80 mmHg
 - HOT Trial
- 2013-2014: <140/80 mmHg
 - ACCORD Trial
- 2015: 140/? mmHg
New Diastolic Blood Pressure Target in 2015

- Individuals with diabetes should be treated to a diastolic blood pressure (DBP) <90 mmHg. A
- Lower diastolic targets, such as <80 mmHg, may be appropriate for certain individuals, such as younger patients, if they can be achieved without undue treatment burden. B

Rationale

- Previous diastolic BP target <80 mmHg based on post hoc analysis of Hypertension Optimal Treatment (HOT trial)
- Consistent with JNC 8 BP targets

Role of Intensive BP Control in Diabetes

Results of the ACCORD BP Study

- Average 3.4 antihypertensive medications in intensive vs. 2.2 in standard care
- Serious adverse events occurred 3.3% intensive vs. 1.3% standard care
- What is the appropriate BP target in type 2 diabetes???
JNC 8 Guidelines are not without controversy
1. Not endorsed by any large professional association (e.g. ACC/AHA)
2. Not all panel members agreed with raising SBP >150 mmHg in individuals ≥60 years
3. May cause initiation of pharmacotherapy too early in “low risk” individuals

JNC 8 Recommendations for Individuals with Diabetes
□ In individuals ≥18 years, initiate pharmacologic treatment when BP ≥140/90 mmHg and treat to goal BP <140/90 mmHg
□ In the general nonblack population initial pharmacotherapy treatment should be:
 □ Thiazide diuretic
 □ Calcium channel blocker
 □ ACE-I or ARB
□ In the general black population initial pharmacotherapy treatment should be:
 □ Thiazide diuretic or calcium channel blocker
Age and Relationship to Systolic and Diastolic Blood Pressure

Stratification of Total CV Risk

<table>
<thead>
<tr>
<th>Blood Pressure (mmHg)</th>
<th>Other risk factors, asymptomatic organ damage or disease</th>
<th>Grade 1 HT</th>
<th>Grade 2 HT</th>
<th>Grade 3 HT</th>
</tr>
</thead>
<tbody>
<tr>
<td>High normal SBP 130–139 or DBP 85–89</td>
<td>Low risk</td>
<td>Moderate risk</td>
<td>High risk</td>
<td></td>
</tr>
<tr>
<td>Grade 1 HT SBP 140–159 or DBP 90–99</td>
<td>Moderate risk</td>
<td>Moderate to high risk</td>
<td>High risk</td>
<td></td>
</tr>
<tr>
<td>Grade 2 HT SBP 160–179 or DBP 100–109</td>
<td>Moderate to high risk</td>
<td>High risk</td>
<td>High to very high risk</td>
<td></td>
</tr>
<tr>
<td>Grade 3 HT SBP ≥180 or DBP ≥110</td>
<td>High to very high risk</td>
<td>Very high risk</td>
<td>Very high risk</td>
<td></td>
</tr>
</tbody>
</table>

- **BP** = blood pressure; **CKD** = chronic kidney disease; **CV** = cardiovascular; **CVD** = cardiovascular disease; **DBP** = diastolic blood pressure; **HT** = hypertension; **OD** = organ damage; **RF** = risk factor; **SBP** = systolic blood pressure.

Multi-drug Therapy Needed to Control BP

<table>
<thead>
<tr>
<th>Systolic BP</th>
<th>Number of BP Meds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLHAT (135 mm Hg)</td>
<td>2</td>
</tr>
<tr>
<td>IDNT (140 mm Hg)</td>
<td>3</td>
</tr>
<tr>
<td>RENAAL (140 mm Hg)</td>
<td>3.5</td>
</tr>
<tr>
<td>UKPDS (144 mm Hg)</td>
<td>2.7</td>
</tr>
<tr>
<td>ABCD (132 mm Hg)</td>
<td>2.8</td>
</tr>
<tr>
<td>HOT (141 mm Hg)</td>
<td>3.3</td>
</tr>
<tr>
<td>AASK (134 mm Hg)</td>
<td>2.8</td>
</tr>
</tbody>
</table>

2013 ESH/ESC Guidelines

Target SBP <140 mmHg
Target DBP <85 mmHg
ACE-I or ARB preferred
Don’t combine ACE-I and ARB

Diuretics for Treatment of Hypertension

- **Thiazides** are most effective; optimal dose 6.25-25 mg
 - Good in elderly
 - Good in African Americans
 - Good for isolated systolic HTN
 - Good for CHF pts or those with edema
- Metolazone can be used if Cr CL<30
- Spironolactone works well for many who don’t tolerate thiazide
- Loop diuretics (except torsemide) usually need to be given twice a day
Chlorthalidone vs. Hydrochlorothiazide

- Chlorthalidone - much longer half-life
 - may provide better 24 hr control with once daily dosing

<table>
<thead>
<tr>
<th></th>
<th>HCTZ</th>
<th>Chlorthalidone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half–life (hrs)</td>
<td>8-15</td>
<td>45-60</td>
</tr>
<tr>
<td>(Long-term dosing)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Concentrates within Erythrocytes
 - Extends T ½
 - Buffers concentration effect: 8X increase in dose 25 → 200 mg QD leads to a 2 X increase in serum concentration

- Chlorthalidone is more potent than HCTZ (1.5 - 2 X)

ALLHAT

Combined CHD in Participants with a History of Diabetes Mellitus or FG 126+ mg/dL at Baseline

<table>
<thead>
<tr>
<th></th>
<th>HR (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A/C</td>
<td>1.02 (0.93-1.12)</td>
<td>0.64</td>
</tr>
<tr>
<td>L/C</td>
<td>1.03 (0.94-1.13)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Cumulative Combined CHD Event Rate vs. Years to Combined CHD Event
Dihydropyridine CCBs: The Swiss Army Knife of BP Meds

- No contraindicating medical conditions (CHF, diabetes, CKD, arrhythmias etc)
- Effective in all ages and ethnicity groups
- Good dose response curve
- Can be used with any other drug class, including non-dihydropyridine CCBs

Dihydropyridine CCBs: Dosing

- **Amlodipine**: 2.5-10 mg qd
- **Felodipine**: 2.5-20 mg qd
- **Isradipine**: 2.5-10 mg bid
- **Nicardipine SR**: 30-60 mg bid
- **Nifedipine ER**: 30-120 mg qd
- **Nisoldipine**: 20-60 mg qd
The Big Three Concept

- Thiazides, ACEI and CCBs
- All appear about equally effective
- Work well together

A Modest Proposal: 3 Drug Step-Care

- Step 1: Start any of the big 3 (ex lisinopril, hydrochlorothiazide or amlodipine)
 - If SBP >20 mmHg above goal start 2
- Step 2: If close to goal increase thiazide dose to 25 mg or amloidpine dose to 10 mg
 - Otherwise add second drug
- Step 3: Add 3rd drug (CCB, ACE, diuretic)
Possible Combinations of Antihypertensive Drugs

Green dashed line: Useful w. some limitations
Black dashed line: Possible, less well tested

Green line: Preferred Combination
Red line: Not recommended

Bedtime Dosing of One BP Medication in Resistant Hypertension

MAPEC Study: Benefit of Taking BP Medications at Bedtime

- 2,156 pts with HTN randomized to group taking all BP medications in AM vs 1 or more taken at bedtime
- Reduced non-dipping (34% vs 62% p<0.001)
- Lower # CVD events 187 vs 68 p<0.001
- Less CVD mortality, MI, ischemic and hemorrhagic stroke

Questions?